My SciELO
Services on Demand
Article
Indicators
- Cited by SciELO
Related links
- Similars in SciELO
Bookmark
ComCiência
On-line version ISSN 1519-7654
ComCiência no.156 Campinas Mar. 2014
ARTIGOS
O que é a filosofia da física?
Por Osvaldo Pessoa Jr.
A filosofia da física é a área que discute os problemas não resolvidos da descrição física do mundo, sendo que muitos estão na fronteira da pesquisa física atual. Mencionarei neste artigo quatro grandes problemas da filosofia da física.
1. O início do tempo
O tempo teve um início? Pensadores como Aristóteles e Newton consideravam que o Universo não teve um início, mas sempre existiu, assim como o tempo. Essa posição era desafiada por alguns, como Agostinho, que em sua concepção cristã, em torno do ano 400, propôs que Deus teria criado o Universo e com ele o próprio tempo. O filósofo Immanuel Kant (1781) concluiu que a questão do início do Universo não teria resposta, pois a razão poderia tanto prová-la quanto refutá-la, constituindo o que chamou de uma "antinomia da razão".
No século XX, a Teoria da Relatividade Geral de Einstein passou a tratar o contínuo do espaço-tempo como podendo ter diferentes formas geométricas, dependendo da distribuição de matéria e energia. Neste contexto surgiu a hipótese do Big Bang, o grande estrondo, sugerindo que haveria um início dos tempos.
Como entender isso intuitivamente? Se algo teve um início, tendemos a pensar que haveria uma situação anterior, mas no caso não poderia haver nada, pois é o próprio tempo que estaria nascendo... Mas como o tempo poderia subitamente vir a existir? Haveria um outro tempo, anterior ao que conhecemos, como o "tempo do vazio" de Kant, ou os dois tempos do cosmólogo Edward Milne (1936)? A ciência ainda não encontrou uma resposta consensual para essa pergunta. Assim, essa questão pode ser tratada como um tópico de filosofia da física.
Uma das respostas dadas ao problema foi sugerida pelo físico inglês Stephen Hawking, aplicando a Física Quântica para a descrição do início do Universo. Juntamente com James Hartle, em 1983, desenvolveu um modelo matemático em que o tempo, no início do Universo, seria como o espaço (isso é feito, matematicamente, exprimindo o tempo como um número imaginário). Após o "tempo de Planck" de 10–43 segundos, esse componente espacial do tempo passaria a ser desprezível, mas bem no início, no regime quântico, ele seria o termo dominante. O resultado disso é que o Universo não teria propriamente um início no tempo, não teria fronteiras, de maneira análoga ao Polo Norte, que não é o início da Terra – e de maneira análoga ao fato de que a superfície da Terra não tem fronteiras. Posteriormente, Hawking modificou esse modelo com Neil Turok, de tal forma que o Universo não teria fronteiras no "instânton" inicial, mas se expandiria eternamente em direção ao futuro.
A descrição do parágrafo anterior é muito rudimentar e imprecisa, mas há referências suficientes para que um aluno de física possa se aprofundar no assunto, se quiser. Uma introdução à filosofia da física é muito próxima à divulgação científica e ao ensino de ciência, no sentido de ser uma abordagem conceitual simplificada. Mas o estudo aprofundado de uma questão de filosofia da física (ou da biologia, da química etc.) requer o domínio da correspondente área da física.
2. Determinismo
Um segundo clássico problema da filosofia da física é a questão de se o Universo é determinista ou não. O determinismo estrito é a tese de que o estado presente do Universo fixa de maneira unívoca o estado do Universo em qualquer instante do futuro. Esta tese é sugerida pela mecânica clássica, para a qual, dadas as condições iniciais e de contorno de um sistema, e dadas as equações diferenciais que regem a evolução do sistema, o estado em qualquer instante futuro poderia em princípio ser calculado.
Segundo a mecânica clássica, o determinismo estrito vale também para um sistema completamente isolado do resto do Universo, ou para um sistema cuja evolução não é afetada de maneira significativa pelo ambiente. Se a evolução de um sistema for previsível para qualquer estado inicial, isso indica que o sistema é determinista, mas o contrário não é válido. Ou seja, se constatarmos que um sistema é imprevisível, isso não implica que ele seja indeterminista, pois pode acontecer que não tenhamos acesso a todas as variáveis que influenciam a evolução do sistema.
No início da década de 1970, com o uso disseminado de computadores na ciência, tornou-se claro uma grande classe de comportamentos denominados "caos determinístico", pois envolvem a não-previsibilidade em sistemas deterministas. Essa situação surge para sistemas regidos por equações não-lineares, como as da atração gravitacional entre planetas. Henri Poincaré mostrou, em 1890, que o problema gravitacional dos três corpos apresenta soluções não-periódicas que apresentam extrema sensibilidade às condições iniciais. Essa sensibilidade às condições iniciais foi redescoberta em 1963 pelo meteorologista estadunidense Edward Lorenz ao utilizar um computador para gerar trajetórias para o sistema de equações não-lineares que propôs para descrever o movimento da atmosfera. O termo "efeito borboleta" foi cunhado para essa sensibilidade, a partir do título de uma palestra sua: "O bater de asas de uma borboleta no Brasil pode provocar um tornado no Texas?".
Um exemplo diferente de sistema imprevisível é fornecido pela Física Quântica, teoria desenvolvida em 1926. Após a consolidação desta teoria, achava-se que ela tinha mostrado que o mundo é essencialmente indeterminista mas, em 1952, David Bohm forneceu uma interpretação determinista para a Física Quântica. Como resultado disso, a questão de se a natureza é determinista ou não permanece como um problema aberto.
Quem estuda uma questão de filosofia da física pode inicialmente se frustrar com o fato de haver várias respostas e nenhuma maneira de decidir qual delas é a melhor. Mas depois se percebe algo curioso: o estudo de diferentes respostas permite uma melhor compreensão da pergunta.
Há duas atitudes básicas diante de uma questão que possui várias respostas plausíveis. A atitude "pluralista" reconhece as diferentes respostas e procura não se comprometer com nenhuma delas; a atitude "partidária" escolhe uma delas e busca argumentar a seu favor, por vezes com argumentos retóricos e de apelo emocional. Há também atitudes intermediárias entre as duas. As atitudes partidárias em face de um problema que não pode ser resolvido objetivamente, em certo momento da história, podem gerar uma controvérsia científica: são nesses momentos que os cientistas mais usam argumentos filosóficos. Além disso, em tais situações, os cientistas costumam usar argumentos "não epistêmicos", que envolvem emoções, pressões institucionais, influências políticas, rivalidades nacionais, traços de personalidade, eventos fortuitos e até fraude.
3. Irreversibilidade
A reversibilidade é uma propriedade de sistemas físicos cujas leis são invariantes ante mudança de sinal do tempo. Um exemplo é um sistema de bolas de bilhar que colidem de maneira elástica, sem nenhum atrito. Após evoluir deterministicamente a partir de um estado inicial, por um tempo T, imagine que os vetores velocidade de todas as bolas de bilhar sejam invertidos simultaneamente. Deixando esse sistema evoluir pelo mesmo intervalo T, considere novamente uma inversão dos vetores velocidade de todas as bolas. Se retornarmos exatamente ao estado inicial, o sistema é reversível.
Um exemplo de sistema irreversível são as bolas de bilhar sobre uma mesa com atrito. Aplicando o procedimento descrito acima, não se retorna ao estado inicial, dado que a energia cinética das bolas é dissipada de maneira constante. Com o passar do tempo, as bolas vão tendo sua energia dissipada pelo atrito, e todas acabam parando, em um único estado final. Essa evolução para um estado final constante no tempo é uma marca dos sistemas irreversíveis.
Praticamente todos os processos macroscópicos que ocorrem em nosso cotidiano são tratados por modelos irreversíveis. Uma bola de basquete que cai em uma quadra acaba ficando parada. No entanto, a mecânica clássica descreve um sistema isolado de átomos como um sistema reversível. O problema da irreversibilidade é como conciliar a irreversibilidade dos processos macroscópicos com a dinâmica reversível dos processos microscópicos subjacentes.
Em 1877, o físico austríaco Ludwig Boltzmann forneceu uma resposta surpreendente a essa questão, buscando reduzir o conceito de entropia (da termodinâmica) ao comportamento estatístico de um sistema mecânico de muitíssimas moléculas. Ele sugeriu que a irreversibilidade que observamos à nossa volta é aparente, e que a dinâmica reversível dos processos microscópicos é que corresponde à realidade. O que ocorre é que o estado final macroscópico do sistema (que tem entropia máxima) pode ser realizado por um número astronômico de estados microscópicos diferentes, sendo que esse número é muitíssimo maior do que o número de microestados correspondentes a outros macroestados possíveis. Supondo que o sistema mecânico microscópico passe por todos os microestados possíveis, demoraria um tempo maior do que a idade do Universo para um sistema macroscópico, como um gás em um recipiente, sair do estado de equilíbrio e entrar em um estado com entropia mais baixa. Em suma, apesar de o sistema ser reversível, temos a impressão de que ele é irreversível, devido ao comportamento de sistemas com um grande número de partículas (lei dos grandes números). Uma bola de basquete parada na quadra tem uma probabilidade finita de pular espontaneamente (devido ao movimento de vibração sincronizado das moléculas que compõem a quadra), mas a probabilidade de isso acontecer é tão ínfima, que o evento nunca é observado.
Vários refinamentos dessa explicação clássica de Boltzmann foram propostos ao longo do século XX, mas nem todos os físicos concordam com ela. Um dos mais influentes críticos dessa explicação é o físico-químico belga Ilya Prigogine, que defendeu que a irreversibilidade ocorre já no nível microscópico, devido a instabilidades intrínsecas aos átomos.
O advento da Teoria Quântica deu a esperança de que se poderia dar uma solução definitiva ao problema da irreversibilidade, mas o fato é que o problema permanece tão espinhoso quanto antes. No contexto quântico, essa questão está intimamente envolvida com outro grande problema filosófico da física, que é o problema da medição da mecânica quântica.
4. Não localidade quântica
A Física Quântica é a descrição científica do mundo das moléculas, átomos e partículas elementares, e de suas interações. Para fazer um resumo em poucas palavras, podemos salientar que os átomos, assim como a luz, têm propriedades ondulatórias, podendo não ter uma posição nem uma velocidade bem definidas. Quando o cientista interage com um objeto quântico, para efetuar uma medição, ele geralmente modifica o estado do objeto de maneira imprevisível. Uma onda espalhada associada, por exemplo, a um único elétron, ao interagir com o aparelho de medição, sofre o que alguns gostam de chamar de "colapso", passando a ter uma posição bem definida. A natureza dessa transição não é compreendida de maneira completa pela Teoria Quântica, e constitui o chamado "problema da medição".
Há dezenas de "interpretações" da Teoria Quântica, cada uma propondo uma solução ao problema da medição. Cada uma é internamente consistente e, de modo geral, consistente com experimentos quânticos. Todas concordam com o "formalismo mínimo" da teoria, que podemos considerar a parte objetiva. Já a interpretação pode ser escolhida conforme o gosto do cientista, e sofre influências do ambiente cultural. Uma interpretação é um conjunto de teses que se agrega ao formalismo mínimo da teoria, e que em nada afeta as previsões observacionais desta. As teses agregadas pela interpretação fazem afirmações sobre a realidade existente por trás dos fenômenos observados, ou ditam normas sobre a inadequação de se fazerem tais afirmações. O estudo das interpretações de uma teoria científica faz parte do escopo da filosofia da física.
Além do problema da medição, há um outro problema filosófico agudo na Física Quântica, a questão da "não localidade quântica". Esse problema surge na interação de dois ou mais objetos quânticos. Podemos imaginar dois átomos separados que entram numa reação química, formando uma molécula. Essa molécula não é a mera junção dos átomos, mas forma uma nova totalidade, uma "geleia ondulatória", com propriedades de simetria próprias. Se pudermos separar novamente os átomos, de maneira bem delicada, eles manterão as propriedades de simetria da molécula original, mesmo estando separados a uma grande distância. Porém, uma perturbação em um dos átomos, por exemplo, feita por um aparelho de medição, pode fazer com que essa simetria se quebre, resultando em um colapso da onda quântica. O ponto misterioso dessa descrição é como os átomos separados conseguem manter as propriedades de simetria da molécula original, mesmo a uma grande distância. O termo não localidade quântica tem sido associado a essa característica "holista" de sistemas quânticos e à questão de como se dá o colapso no caso de dois sistemas quânticos que interagiram e se separaram.
O problema é ainda bastante misterioso, e o trabalho que trouxe nova luz foi a pesquisa do físico norte-irlandês John Stuart Bell, em 1964. Simplificando um pouco, podemos dizer que ele mostrou que é preciso abandonar pelo menos uma dentre duas teses presentes na física clássica do início do século XX: o realismo ou a localidade. O realismo é a tese de que o mundo quântico pode ser descrito como uma realidade independente de observadores, com propriedades objetivas que fornecem as probabilidades encontradas nas medições quânticas. A localidade é a tese de que qualquer evento (como uma medição) que aconteça a uma grande distância de uma certa região não pode afetar instantaneamente essa região, pois os efeitos físicos se propagam no máximo com a velocidade da luz.
Se quisermos manter o realismo, teremos que aceitar a não-localidade em nível microscópico, como por exemplo nos colapsos não locais da onda quântica. Por outro lado, se quisermos manter a localidade, pelo fato de que é impossível transmitir um sinal macroscópico a uma velocidade maior do que a da luz, então teremos que considerar que a Teoria Quântica é apenas um instrumento para fazer cálculos e obter previsões experimentais, e não uma descrição da realidade dos átomos.
Muitos físicos não gostam desse "dilema de Bell", pois o cientista gosta sempre de obter uma resposta única. Por exemplo: "temos que aceitar que a Física Quântica é não local". Ou então: "não se pode descrever a realidade do mundo quântico, independente da presença de um observador que faz medições". Alguns cientistas fazem até as duas afirmações, mas o que o trabalho de Bell nos diz é mais sutil. Ele afirma que temos que abandonar uma dessas conclusões (ou as duas), mas não sabemos qual. É um problema em aberto, e por isso é uma questão de filosofia da física!
Osvaldo Pessoa Jr. é graduado em física e em filosofia, com mestrado em física experimental e doutorado em história e filosofia da ciência pela Indiana University. É professor do Departamento de Filosofia – FFLCH – USP . Contato: opessoa@usp.br